1. Central limit theorem. In brief, what does the central limit theorem say? Why is it useful when estimating confidence intervals?

2. Cards. A standard deck of cards has 13 spades, 13 hearts, 13 diamonds, and 13 clubs. I draw four cards randomly from a standard deck. Write an expression for the probability that all four cards are of the same suit. (Your expression can use combinatorial notation.)

3. Marbles in an urn. I have an urn which contains two red marbles, two green marbles, and two blue marbles. I will draw three marbles from the urn *without replacement*. Find the probability that I will draw one marble of each color.

4. Bayesian inference. 1/5 of the population has a disease. Those with the disease will test positive 3/4 of the time. Those without the disease will test positive 1/4 of the time. If you have tested positive, what is the probability that you have the disease?

5. Dice experiment. Sketch the PMF (probability mass function) of the value of a die, the sum of two dice, and the sum of fifteen dice.

6. Exponential distribution experiment. Sketch the PDF (probability density function) of the value of a draw from an exponential distribution, the sum of two draws from an exponential distribution, and the sum of fifty draws from an exponential distribution.

7. Binomial distribution, part 1. If I flip a *fair* coin three times, what is the probability that I will get exactly two heads? Derive your answer with a probability tree, and without the use of the general formula for the binomial PMF.

8. Binomial distribution, part 2. If I flip a *fair* coin *n* times, what is the probability that I will get exactly *k* heads? Try to explain your answer as well as you can.

9. Sample average: Expected value and variance. Let $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ be the average of *n* random draws that I take from some random variable *x*, with mean and variance μ and σ^2 . Derive $E(\bar{x})$ and $var(\bar{x})$, the expected value and variance of my sample average.

10. Sample average: Confidence interval. Defining $z^* = \Phi^{-1}\left(\frac{k+1}{2}\right)$, use your answer from the previous problem to construct the formula for an interval where we believe that μ should be located with probability k.

11. Difference between sample averages: Expected value and variance. Let $\bar{x}_A - \bar{x}_B = \left(\frac{1}{n_A}\sum_{i=1}^{n_A} x_{Ai}\right) - \left(\frac{1}{n_B}\sum_{j=1}^{n_B} x_{Bi}\right)$ be the difference between two sample averages, from populations A and B. Derive $E(\bar{x}_A - \bar{x}_B)$ and $var(\bar{x}_A - \bar{x}_B)$, the expected value and variance of this difference.

12. Difference between sample averages: Application. In a randomized trial, $n_E = 50$ subjects took a hair growth pill, and $n_C = 50$ subjects took a placebo pill. The hair length of both groups was measured one year later. The experimental group had average hair growth of $\bar{x}_E = 12$ inches, with a sample variance of $s_E^2 = 16$. The control group had average hair growth of $\bar{x}_C = 10$ inches, with a sample variance of $s_C^2 = 16$. Estimate the effect of the hair growth pill; that is, give both a point estimate for $\mu_E - \mu_C$ and a 95% confidence interval around your point estimate. You can use a formula here if you like.