Part I: Calculation questions

1. Simple regression coefficients. Label and use the blank columns to find *a* and *b*, the OLS estimates of α and β in the regression model $y_i = \alpha + \beta x_i + \varepsilon_i$.

x	у		
2	17		
2	11		
4	9		
4	7		
6	3		
6	1		

2. Correlation. Label and use the blank columns to find *r*, the correlation between *x* and *y* below.

x	У			
8	24			
8	21			
9	20			
10	19			
11	18			
14	18			

3. Residuals. We are estimating the regression model $y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \varepsilon_i$ using the data below. We find that the OLS estimates of the β s are $b_0 = 10$, $b_1 = 1$, and $b_2 = 1$. Taking this as given, label and use the blank columns to find s^2 , the estimated variance of the error term ε_i . (Hint: with two *x* variables, we write K = 3 for the number of regressors including the intercept term.)

<i>x</i> ₁	<i>x</i> ₂	у		
1	4	13		
4	1	17		
3	3	16		
4	4	18		
5	5	20		
7	4	19		
4	7	23		

4. Confidence intervals and hypothesis testing. Suppose that we are estimating a linear regression model $y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{3i} + \varepsilon_i$. We find that the OLS estimate of β_1 is $b_1 = 35$, and that the standard error of b_1 is $SE(b_1) = 20$. Find the *t*-statistic, the *p*-value associated with the null hypothesis that $\beta_1 = 0$ (i.e. x_1 has no effect on *y*), and a 95% confidence interval for β_1 . You can use a normal approximation for the distribution of b_1 ; see e.g. the attached table for reference.

5. Polling. We have conducted a random poll of 36 voters, in which 21 support Zack, and 15 support Jessie. Give an estimate of Zack's support with a margin of error at the 95% confidence level. You can report your answers in terms of fractions or percentages. You can approximate $\Phi^{-1}\left(\frac{.95+1}{2}\right) \approx 1.96$ as 2 for simplicity, if you like.

Part II: Derivation and explanation questions

6. Regression coefficients, part 1. We believe that a dependent variable *y* is affected in a linear way by one measurable variable *x*, and by a random error term which we denote as ε . We want to estimate the true data-generating process $y_i = \alpha + \beta x_i + \varepsilon_i$ with $y_i = a + bx_i + e_i$. In mathematical terms, what exactly do the OLS estimates *a* and *b* minimize? Write this out in terms of *a*, *b*, the x_i s, and the y_i s. What is the motivation for minimizing this? Illustrate with a diagram.

7. **Regression coefficients, part 2.** The minimization problem described above implies that $\sum_i (-2X_i(Y_i - bX_i)) = 0$, where $X_i \equiv x_i - \bar{x}$ and $Y_i \equiv y_i - \bar{y}$. Use this to solve for *b* in terms of the data.

8. Single vs. multiple regression analysis. Suppose that a dependent variable *y* is impacted by two independent variables, x_1 and x_2 in a linear manner; i.e. $y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \varepsilon_i$. I run an OLS regression of *y* on x_1 and x_2 , and find that $b_1 > 0$, and $b_2 < 0$. However, if I regress *y* only on x_1 , I find that the estimated slope coefficient, *b*, has a negative sign. (You can assume that all of the *p*-values in both regressions are very small.) What does all of this imply about the sign of the correlation between x_1 and x_2 ? Explain as clearly as you can.

9. Variance of the slope term. We are estimating $Y_i = \beta X_i + \varepsilon_i$ with $Y_i = bx_i + e_i$, where $X_i = x_i - \overline{x}$ and $Y_i = y_i - \overline{y}$. Using the formula for *b* as a starting point, derive the formula for var(*b*), the variance of the OLS estimate of β , in terms of the data and in terms of σ^2 , the true variance of the error term ε_i .