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OLS Regressions with One Independent Variable 

1. Setup 

 A measured variable   is determined by another measured variable  , and random error 

which we denote as  . Suppose that the true relationship between the variables can be written as  

            

 However, we can’t observe  ,  , or the   s directly; instead, we have   observations of    

values along with corresponding    values. Our task is to estimate   and  ; we write our 

estimates of   and   as   and  , respectively. Then, we define           as the predicted value 

of   for each    according to our model, and           as the ‘residual’, i.e. the difference 

between the observed value and the predicted value. Thus, our estimated model is 

            

 The Ordinary Least Squares (OLS) estimate is designed to minimize the sum of squared 

residuals (   ). That is, we will implement OLS by choosing the values of   and   that minimize  

       
           

             
  

(Note: all summation signs in this document indicate summation from     to    , so we will 

omit this in the notation for visual clarity.) 

2. Estimate of the intercept term 

 To find an expression for the    -minimizing value of  , we set the partial derivative of     

with respect to   equal to zero, and solve for  : 

    

  
                  

   
  

              

            

            

         

Here,    
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    are the average values of   and  , respectively.  



3. Estimate of the slope term 

 Define         , and          as the ‘demeaned’ versions of the   s and   s. We can now 

write the residual    as                                        . Given that we 

have          (from the previous section), this simplifies to          , in which case we can 

write              
 .  

 Next, we take the partial derivate of     with respect to  , and solve for   in terms of the 

data. 

    

  
                 

   
  

           
     

    
        

  
     
   

  

  
               

         
 

4. Variance of the slope term 

 Researchers are often interested in determining the probability with which the slope term in 

the true data-generating process             has the sign indicated by the estimated slope 

term,  . To estimate that probability, we must first estimate the variance of  , as follows: 

           
     
   

       
 

   
         

 

   
  

 

          

  
 

   
  

 

                  
 

   
  

 

                       

  
 

   
  

 

   
             

           
 

   
  

 

   
        

    

  
 

   
  

 

     
  

  

   
  

  

         
 

In the derivation above, we proceed by treating the   s as constants, possessing zero variance. 

On the other hand, the   s possess variance because they include the random error terms   . 

That is, we assume that          , and                            . We define    

        as the variance of the error term, and assume that it is the same for all observations.  

 We cannot observe    directly, but we can estimate it based on the data as  

   
 

   
   

  



Substituting    for    in the expression for       , we obtain the estimated variance of  : 

        
  

         
 

 
   

 

     
 

         
 

The standard error of   is the estimated standard deviation of  , i.e. the square root of        : 

                
  

         
 
 
 

   
 

     
 

         
 

5. Confidence intervals 

 As   increases, the distribution of   converges toward a normal distribution; that is,   is 

‘asymptotically normal’. Also, the expected value of   is  ; that is,   is a ‘consistent’ estimator. 

(Proofs of these two propositions can be found elsewhere.)  

 Taking these two facts together with our discussion of the variance of  , we believe that (with 

a sufficiently large sample size)   is distributed approximately normally, with mean   and 

standard deviation      .  

 Therefore, with probability   ,   has fallen in the interval           , where    

    
   

 
 , and        is the inverse function of the standard normal distribution. We can find 

   in Excel using the code tstar = normsinv( (k + 1) / 2 ). 

 Therefore we can say that with confidence   ,   is located in the interval           . 

6. Hypothesis testing 

 To argue that the sign of   is ‘statistically significant’, we need to reject the null hypothesis 

that    . So we consider the following question: If   is zero, what is the probability that we 

observe   being as far from zero as it is?  

 We define the ‘t-statistic’ as the number of standard errors that separate   from zero, and 

thus the number of standard deviations separating   from its own mean if the null hypothesis is 

true:  

  
 

     
 

The probability of observing a t-statistic with absolute value     or greater, under the null 

hypothesis that    , can be approximated by  

           



In Excel, we can calculate this via p = 2 * normsdist( -abs(t) ). We call this the ‘p-

value’; the closer it is to zero, the less plausible is the null hypothesis, and thus the more 

convincing is the alternative hypothesis that the true sign of   is equivalent to the sign of  .  

7. Refinement: Student’s t-distribution 

 Stata models   as following a Student’s t-distribution, which is similar to a normal 

distribution but not identical. With large samples, the two are functionally equivalent. With 

smaller samples, the use of a t-distribution leads to slightly wider confidence intervals and 

slightly higher p-values (and thus, slightly more conservative results overall).  

 For use in confidence intervals, we can generate    values according to a t-distribution with 

    ‘degrees of freedom’ with the Excel code tstar = tinv( 1 – k , n – 2 ). 

  We can generate p-values according to a t-distribution using the Excel code  

p = tdist( abs( t ) , n – 2 , 2 ); here we input “2” for the last argument to indicate 

a ‘two-tailed test’.  


