## SECOND TEST. ECON 201, fall 2015. NAME: \_\_\_\_\_

Answer in the space provided. Show correct work for full credit. Box your final answers.

**1. Profit maximization with one input.** Let y and p be the quantity produced and price of a firm's output. Let x and w be the quantity and price of the firm's production input. Assume that the firm is a price-taker, with no other costs aside from this input.

a) Let y = f(x) be the firm's production function. Assume that f'(x) > 0 and f''(x) < 0. Write an expression for profit ( $\pi$ ) in terms of x, and use this to derive an equation that characterizes  $x^*$ , the profit-maximizing value of x. Be as explicit as possible throughout.

**b**) Let C(y) be the firm's cost function. Assume that C'(y) > 0 and C''(y) > 0. Write an expression for profit ( $\pi$ ) in terms of y, and use this to derive an equation that characterizes  $y^*$ , the profit maximizing value of y. Be as explicit as possible throughout.

For parts (c) – (e), suppose that  $f(x) = 300x^{1/3}$ , p = 2, and w = 8

c) Write  $\pi(x)$  in the most explicit form, and use it to find  $x^*$ .

d) Write  $\pi(y)$  in the most explicit form, and use it to find  $y^*$ .

e) Verify that your answers in parts (c) and (d) are consistent with each other.

**2. Profit maximization with two inputs.** Suppose that a (perfectly competitive) firm has the production function  $y = f(x_1, x_2) = x_1^{2/5} x_2^{1/5}$ , where y is its output quantity, and  $x_1$  and  $x_2$  are the quantities it uses of inputs 1 and 2, respectively. Let p = 2,000 be the output price, and let  $w_1 = 1$  and  $w_2 = 4$  be the input prices.

**a**) Find the profit-maximizing values of the input and output quantities:  $x_1^*$ ,  $x_2^*$ , and  $y^*$ .

**b**) What type of returns to scale does this production function have? Is marginal cost C'(y) decreasing, constant, or increasing in *y*? Explain as clearly as you can why your two findings here are intuitively consistent with each other.

3. Long run competitive equilibrium. Suppose that each firm in a perfectly competitive industry has the cost function  $C(y) = \frac{1}{100}y^2 + y + 100$ , where y is the firm's output quantity. a) Find a firm's average variable cost function, AVC(y).

**b**) Find a firm's average cost function, AC(y).

c) Find a firm's marginal cost function, MC(y).

d) What value of y minimizes a firm's average cost?

e) What is the minimum value of a firm's average cost?

**f**) In the short run (where each firm is committed to paying its fixed cost), what is a firm's supply function, y(p)?

g) Now consider the long run, in which firms may enter and exit. Suppose that market supply is given by S(p) = ny(p), where *n* is the number of firms, and that market demand is given by D(p) = 2900 - 200p. Find the equilibrium number of firms,  $n^*$ .



**h**) On the graph to the right, draw an individual firm's marginal cost (*MC*), average cost (*AC*), and average variable cost (*AVC*) functions.

4. Cost minimization: perfect complements. Suppose that a firm's production function is  $y = f(x_1, x_2) = \min\{\alpha x_1, \beta x_2\}$ , where  $x_1$  and  $x_2$  are input quantities, and  $\alpha > 0, \beta > 0$  are constants. Let the input prices be  $w_1$  and  $w_2$ .

a) Write expressions for the input quantities  $x_1$  and  $x_2$  that one would use to produce an output quantity of *y* in a cost-minimizing way.

**b**) Use your answer from part (a) to write a cost function, C(y). Write this in a form that is as simple and as explicit as possible.

5. Cost minimization: perfect substitutes. Suppose that a firm's production function is  $y = f(x_1, x_2) = \alpha x_1 + \beta x_2$ , defining all component terms as in the previous problem.

a) Fill in the missing spaces in the conditional factor demand function below. if if > > $x_2(w_1, w_2, y) = \begin{cases} \\ \end{cases}$  $x_1(w_1, w_2, y) = \left\{ \right.$ 

otherwise

otherwise

**b**) What is the cost of producing y units if you use only input 1? What about if you use only input 2? Use these answers to write general cost function, C(y).