Problem set 4, due Tuesday 10/28/2014

1. Negative externality. Suppose the market for a certain good (e.g. 'gasoline') is perfectly competitive, but that the good causes a *negative* externality. Marginal benefit, marginal private cost, and marginal external cost are given by the functions below:

$$MB = 20 - \frac{1}{50}Q$$
 $MC = 5 + \frac{1}{100}Q$ $MEC = 6$

a) No policy. Given that there is no policy to address the externality, find the equilibrium quantity, price, consumer surplus, producer surplus, external cost, and total economic surplus.

$$Q^* = _ P^* = _ CS^* = _$$

 $PS^* = _ EC^* = _ TES^* = _$

Graph the market with no policy intervention, labeling *CS*^{*}, *PS*^{*}, and deadweight loss (*DWL*). Why is this area the deadweight loss?

b) Pigovian tax. To maximize total economic surplus, the government should charge a tax of $\tau^o =$ _____ per unit to the consumers. Given this, find the equilibrium quantity, price, consumer surplus, producer surplus, external cost, government revenue, and total economic surplus.

$$Q^{o} = \underline{\qquad} P^{o} = \underline{\qquad} CS^{o} = \underline{\qquad} PS^{o} = \underline{\qquad} GE^{o} = \underline{\qquad} TES^{o} = T$$

Graph the market with the subsidy, labeling *CS*^o and *PS*^o. Why is there no deadweight loss in this case?

2. Positive externality. Suppose the market for a certain good (e.g. 'education') is perfectly competitive, but that the good causes a *positive* externality. Marginal private benefit, marginal external benefit, and marginal cost are given by the functions below:

$$MB = 200 - \frac{1}{25}Q \qquad MEB = 110 \qquad MC = 60 + \frac{1}{100}Q$$

a) No policy. Given that there is no policy to address the externality, find the equilibrium quantity, price, consumer surplus, producer surplus, external benefit, and total economic surplus.

$$Q^* = _ P^* = _ CS^* = _$$

 $PS^* = _ EB^* = _ TES^* = _$

Graph the market with no policy intervention, labeling *CS*^{*}, *PS*^{*}, and deadweight loss (*DWL*). Why is this area the deadweight loss?

b) Pigovian subsidy. To maximize total economic surplus, the government should offer a subsidy of $\sigma^o = ___$ per unit to the consumers. Given this, find the equilibrium quantity, price, consumer surplus, producer surplus, external benefit, government expenditure, and total economic surplus.

 $Q^{o} = \underline{\qquad} P^{o} = \underline{\qquad} CS^{o} = \underline{\qquad} PS^{o} = \underline{\qquad} GE^{o} = \underline{\qquad} TES^{o} = \underline{\qquad} TES^{o} = \underline{\qquad} PS^{o} = \underline{\qquad} TES^{o} = \underline{$

Graph the market with the subsidy, labeling *CS*^o and *PS*^o. Why is there no deadweight loss in this case?