NAME: _____

Problem set 6, due Tuesday, November 25th

Suppose that every (profit-maximizing) firm in a particular (perfectly competitive) industry has the cost function $C(q) = \frac{1}{20}q^2 + 80$, and thus the marginal cost function $MC(q) = \frac{1}{10}q$, where q is the quantity of output it produces. Market demand is given by the function $Q_d(p) = 1000 - 50p$. Let n be the number of firms.

a) Find the supply function of each firm, $q_s(p)$, and use this to find the market supply function, $Q_s(p) = n \cdot q_s(p)$.

For parts b-d, suppose that in the short run there are 5 firms in the industry.

b) The short run market equilibrium price is _____. At this price, each firm produces $q = ____$ units, and all the firms together produce $Q = ____$ units.

c) Each firm has revenue R =____, cost C =____, and profit $\pi =$ ____.

d) Do firms want to enter or exit?

For parts e-g, suppose that in the short run there are 45 firms in the industry.

e) The short run market equilibrium price is _____. At this price, each firm produces $q = ____$ units, and all the firms together produce $Q = ____$ units.

f) Each firm has revenue R =____, cost C =____, and profit $\pi =$ ____.

g) Do firms want to enter or exit?

Now we consider the long run equilibrium, in which firms do not want to enter or exit.

h) Find each firm's average cost function, AC(q).

i) In the long run equilibrium, the price is $\tilde{p} = _$, and each firm will produce $\tilde{q} = _$ units of output.

j) Therefore, the number of firms in the long run equilibrium is $n^* =$ _____.

k) Find each firm's average variable cost function, *AVC*(*q*).

I) On graph A below, draw an individual firm's AC(q) function, AVC(q) function, and MC(q) function. Draw lines representing the price in the case with 5 firms, 45 firms, and n^* firms.

m) On graph B below, draw the market demand function $Q_d(p)$, as well as the three market supply functions $Q_s(p)$ corresponding to the case with 5 firms, 45 firms, and n^* firms.

